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Abstract
Successful innovators have become billionaires by generating breakthrough

technologies that are later widely adopted in the society. This paper proposes a
model to explain why this is (constrained) efficient. I consider an environment
where a population of agents must choose between pursuing a risky project or
a safe project. Before taking the decision, each agent can acquire information
about the risky project by exerting unobservable effort. Then an aggregate
statistic of the acquired information in the economy becomes public and each
agent picks a project. In equilibrium a free-riding problem arises and the
amount of agents acquiring information decreases compared to the efficient
allocation. I then study the optimal contract designed by a social planner who
wants to maximize social welfare but does not observe individual efforts. The
optimal contract divides the population between nonexperimenters and a few
experimenters that exert high effort, thus substituting the extensive margin of
information by its intensive margin. It also splits the total returns of the risky
project among experimenters when the unknown project yields significantly
greater returns than the safe project. Therefore, it explains why paying so
much to successful innovators is optimal.
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1 Introduction

Recognized innovators such as Bill Gates and Steve Jobs have become billionaires
by creating breakthrough technologies that are later widely used in the society. Could
we achieve similar levels of innovation without having to pay them so much for
such new technologies? Why is it that other innovators who create more marginal
improvements are not paid as much? (Ebersberger et al., 2008; Marsili and Salter,
2005) This paper proposes a model of delegated expertise with multiple agents to
explain these features.

The model features a population of risk neutral agents who must decide between
pursuing a safe project with known returns and a risky project with unknown returns.
Each agent decides simultaneously how much effort to exert to obtain a signal about
the risky returns; such effort determines the precision of their signal. Then, an
aggregate signal, which precision is the sum of the individual efforts, is revealed to
all the agents and the agents decide simultaneously between the safe and the risky
project.

I first study the equilibrium of this game and compare it with the efficient out-
come, which can be implemented by a social planner that observes individual efforts.
Whereas the first best is characterized by lots of agents investing in the smallest
possible precision, in the equilibrium there are fewer agents investing also in the
smallest possible precision. The separation of the agents occurs endogenously since
there is a minimum scale effort in case an agent decides to experiment, that assures
the existence of the equilibrium and prevents everybody to become an experimenter.1

The equilibrium features free-riding and the overall amount of available information
is smaller. Agents prefer to wait until others incur in the cost of experimentation
since the next stage they will observe the aggregate signal and take a more informed
decision. Hence, the probability of choosing a new and better technology decreases
with respect the first best because of the underlying incentives.

1Instead of imposing a minimum effort for experimenters, one can impose a fixed cost for
experiments yielding the same result.
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The second contribution of this paper is to characterize optimal contracts that
increase the information in this economy. I take a mechanism approach where the so-
cial planner wants to maximize social welfare but does not observe individual efforts.
Optimal contracts under budget balance2 splits the population between nonexperi-
menters and a few experimenters that must exert high effort, and proposes a wage
contingent on the type of agent.

The optimal wage must balance two countervailing effects. On one hand, there is
a moral hazard effect represented by a likelihood ratio, as is usual in hidden action
problems, comparing (marginally) the probability of undertaking the risky project
when more effort is exerted. Although effort in this environment does not generate
greater expected returns directly, it does increase the expected returns indirectly by
improving decision making. Therefore, the likelihood ratio suggests that contracts
should be monotone increasing in the return of the risky project for experimenters.

On the other hand, there is a free riding effect represented also by the same like-
lihood ratio, expressed this time in discrete terms, but with the opposite sign. The
planner has now some pressure to reward experimenters for low returns since other-
wise experimenters will prefer to become non-experimenters, decreasing the amount
of information in the economy and increasing the probability of being rewarded for
low outcomes.

However, as the spillovers of the innovation become large, i.e. the size of the
population increases, the moral hazard effect dominates. The reason is that the
previous deviation is no longer profitable since such returns have to be split among
too many people. Therefore, under limited liability, the optimal contract should split
the total output among nonexperimenters if the risky technology is not significantly
better than the safe one to provide them incentives to not become experimenters.
And output should be split among experimenters if the risky technology is chosen
and its return is significantly better than the return of the safe technology, thus
imposing more risk on them.

2If budget balance is not imposed, then the first best is attainable.
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Since agents can learn more accurately about the risky technology by having more
people experimenting or by increasing the precision per experimenter, the planner
substitutes the extensive margin by a greater intensive margin to provide more pow-
erful incentives. Moreover, it pays the experimenters the whole surplus of the society
when the project becomes very successful. This constrained efficient outcome resem-
bles the features exposed at the beginning where a few successful innovators will get
paid a large amount of money, whereas not so successful entrepreneurs, and the rest
of the society will not be paid as much. The result has implications for optimal tax-
ation for innovators, payment schemes to encourage technology adoption and patent
licensing.

1.1 Literature Review

Models of delegated expertise were first proposed by Lambert (1986) and Demski
and Sappington (1987) in the context of a single principal and a single agent. I
adapt this framework to study incentives to innovation in presence of free-riding. An
extension to two agents was doned by Gromb and Martimort (2007) who explore
the problem in presence of vertical and horizontal collusion. However, they study
the case where the gathered information is not observable and the agents must be
encouraged to report it truthfully.

The acquisition of information is also related to bandit problems where an agent
can learn about the return of a project by undertaking it as in Manso (2011). This
approach was extended to two agents by Ederer (2008). This paper departs from this
framework by enriching the information acquisition process and allowing agents to
invest in the precision of their signals, thus exploiting the substitution between the
intensive and the extensive margin. Bonatti and Horner (2011) study moral hazard
in teams over time where the return of a project is unknown and effort determines
the rate of arrival of the return. My setup is different in that individuals invest one
time on a signal before deciding to undertake the risky project, and in that I solve
for optimal contracts to improve the equilibrium.

Papers that study experimentation in teams using a bandit structure include
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Bolton and Harris (1999), Keller et al. (2005), and Klein and Rady (2011). Closer to
our paper is Malueg and Tsutsui (1997), on their model firms compete over time by
investing in R&D on an uncertain project. All these mentioned papers characterize
equilibria when actions are observable whereas our main question is how to improve
the allocation when actions are private information. On the other hand, Rosenberg
et al. (2007), Hopenhayn and Squintani (2011), and Murto and Valimaki (2011) study
problems where actions chosen by agents are observed and outcomes are unobserved.
This is the opposite case as the model proposed here where signals are perfectly
observed and actions are private information.

The next section introduces the setup for one agent. The third section studies
the equilibrium and compares it with the first best allocation. The fourth section
characterizes the optimal contract when the precision chosen by each agent is un-
observable. In the next section I discuss how to implement the contract in different
real-world applications. In the last section I conclude.

2 One Agent Setup

Consider the case of a risk agent who has to decide between a safe project with
known returns and a risky project with unknown returns.3 The safe project has a
net return ys > 0. There is also a risky one whose return yr ∈ [0, y] is unknown, with
y > ys. The agent has a nondegenerate prior belief g (yr) over the unknown return
with finite mean µ0.

The agent can generate information about the risky project by acquiring a contin-
uum of e > emin independent signals at a cost C (e); this cost can be associated with
R&D expenditures or the cost of running trials. Assume the cost function satisfies
C (0) = 0 and C (emin) = c, is increasing and is strictly convex in e. The minimum
scale effort emin is associated to a fixed cost of starting the process of experimentation.

Each independent signal xk is drawn from the distribution f (xk|yr), for each

3The individual can be in fact risk averse or risk lover, just let the returns perceived by the
agent be measured in utils and let the agent maximize a Von Neuman-Morgenstern utility function
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k ∈ [0, e]. We will refer to e as the precision of the information and denote by x a
sufficient statistic of the signals. Let the conditional pdf and cdf of x be denoted by
f (x|yr, e) and F (x|yr, e), respectively, with support [x, x].4 Assume both functions
are twice differentiable in e and x. Note, however, that the prior distribution of yr is
independent of e. Let the sufficient statistics be ordered, following Milgrom (1981),
a signal x is more favorable than signal x′ if the posterior distribution g (yr|x, e) first
order stochastically dominates the posterior distribution g (yr|x′, e).

The agent faces the following problem:

max
e

Ex

[
max

jx∈{s,r}
Eyjx

[yjx|x, e]
]
− C (e)

where jx is the project chosen by the principal when x is observed. Since there
are two stages, we proceed to solve the individual’s problem using backward induc-
tion. That is, I will first determine which project is going to be chosen given the
information acquired. Second, I find the optimal precision e given the agent decides
to experiment. Finally, I characterize when the agent decides to experiment as a
function of ys and c.

Without loss of generalization, let x = Eyr [yr|x, e] be the posterior mean of the
risky project.5 The individual will choose the risky project if x > ys, thus the payoff
of the second period is given by max {x; ys}. Note this is a convex function of x.
The value of experimentation is defined as the ex ante expectation of the utility in
the second period, that is

U (e) = Ex [max {x; ys}]

4Alternatively, the acquisition of information can be modelled as the purchase of a signal x
with precision e defined in the Blackwell (1951) sense. That is experiment X is more precise than
experiment X ′ if you can mimic signal X ′ by adding noise to signal X. Formally, experiment
X is sufficient for (more precise than) experiment X ′ if for every x′ ∈ X ′ there is a probability
distribution over X, g (x;x′) where x ∈ X, such that

∫
g (x;x′) f (x|y) dx = f (x′|y) for any y.

5Since signals are ordered, the posterior mean will be a monotone transformation of the signal.
Thus the distribution of the posterior mean will be a transformation of the distribution of the
sufficient statistic. Hence, we can let x = 0 and x = y

6



From the previous properties we can prove the following lemma:

Proposition 1. The value of experimentation U (e) is greater than max {µ0; ys},
and is differentiable, strictly increasing, and bounded in e

Figure 1: Utility in second period
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The intuition of the proposition is as follows. The expected posterior mean Ex [x]

is just the prior mean µ0, which means that the learning process is a Martingale
and assures that with enough signals or with a sufficiently large precision we would
eventually learn. Therefore, as e approaches infinity, the sufficient statistic perfectly
reveals the unknown return, i.e. it is a known transformation of the unknown return.
In other words, the limit conditional distribution lime→∞ f (x|yr, e) will be degenerate
at yr. Hence, the unconditional distribution of the posterior mean converges to the
prior distribution. Moreover, the distribution f (x|e), second order stochastically
dominates the distribution f (x|e′), for all e < e′. Since the utility is convex in x,
then the individual prefers a higher e.

If at time 0 the individual chooses to experiment, then she will choose precision
e to maximize:

max
e
U (e)− C (e) (1)

Unfortunately we cannot assure this is a concave problem since U (e) may be
convex for low values of precision (Moscarini and Smith, 2002). However, since the

7



option value is bounded and the cost is strictly convex, we can assure the existence
of a solution to the problem. The next proposition characterizes the solution.

Proposition 2. A solution to problem (1) exists. If the solution is interior, the
optimal precision e∗ is characterized by

Ce (e
∗) = Ue (e

∗) (2)

Moreover, if
∫ y

0
F (x|e) dx is strictly concave in e, then condition (2) is also suf-

ficient and the maximum is unique.

The strict concavity condition implies that even though increasing the precision
generates a mean preserving spread on the distribution, such spread becomes smaller
as the precision becomes larger. Such condition was also suggested by Szalay (2009)
to motivate the use of the first order approach in a procurement problem. The next
lemma shows how the optimal precision depends on the prior belief.

Proposition 3. If
∫ y

0
F (x|e) dx is concave in e then the optimal precision e∗

1. Achieves a unique maximum when ys = µ0

2. Is strictly increasing in ys as long as ys < µ0

3. Is strictly decreasing in ys as long as ys > µ0.

At the beginning of the first period, the agent will decide to experiment if

U (e∗)− C (e∗) ≥ max {ys;µ0}

Let the maximized objective function of the agent be denoted by V (ys, c) =

max {U (e∗)− C (e∗) ; ys;µ0}.

Proposition 4. The function V (ys, c) is nondecreasing and convex in ys and the
principal decides to experiment, e∗ > 0, when c ≤ ĉ and ys ∈ (ac, bc) ⊆ (0, y), where
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µ0 ∈ (ac, bc). Moreover, such interval is decreasing in c, that is (ac, bc) ⊂ (ac′ , bc′) for
any c < c′ < ĉ, with (a0, b0) = (0, y) and aĉ = µ0 = bĉ.

Even if beliefs are relatively pessimistic the individual decides to acquire infor-
mation because of the potential gain represented by the value of experimentation.
Indeed the precision chosen is increasing in the beliefs when they are pessimistic and
achieves a maximum when ex ante the two projects have the same expected mean.
When beliefs start to be optimistic, precision decreases, until a point where the agent
does not have any more incentives to acquire information. The lower is the fixed cost
c, the greater is the interval over which the agent decides to experiment.

3 Team Problem with Multiple Agents

Suppose there is a population of N risk neutral agents who must choose between
a risky project and a safe project. Let the agents appropriate the whole return of
the project they choose. All agents share the same prior beliefs and can acquire
information about the risky project by exerting costly effort. Assume the informa-
tion gathered becomes public and other agents can use it to update beliefs. Since
information is now a public good there will be free-riding in equilibrium and there
will be less information than in the first best.

The utility functions for each agent and the returns for each project are given as
before. Of particular importance will be the fixed cost incur by experimenters since
it will generate a natural partition of the population between experimenters and
non-experimenters. The fixed cost will also assure the existence of an equilibrium
when the size of the population goes to infinity. Assume that the sufficient statistic
obtained from the information acquisition of all agents is publicly observed by the
agents. In this scenario agents decide whether to experiment and obtain costly extra
signals or use the available signals from others.

I consider again the case of two stages. In the first stage the individuals decide
simultaneously whether to acquire information or not. If an agent i decides to exper-
iment, she must also choose how many signals to acquire, ei at a cost C (ei). Assume
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signals acquired by different individuals are independent and identically distributed
with pdf f (xk|yr). At the end of the period each individual i observes the overall
sufficient statistic x with pdf given by f

(
x|yr,

∑N
j=1 ei

)
. At the beginning of the

second stage each agent updates her beliefs and decides which project to pursue.
Since all signals are public, in equilibrium everybody will take the same decision in
the final period.

3.1 Equilibrium

Suppose first that each agent appropriates the return from the chosen project and
thus the payoff for agent i is given by y − C (ei). In order to simplify the analysis I
will focus on equilibria where experimenters choose the same level of precision. Let
the number of experimenters be denoted by n. It is important to note that not every
agent will be necessarily an experimenter in equilibrium, a nonexperimenter will set
ei = 0. Let e−i be the sum of precision chosen by all individuals except i. Therefore
each agent is willing to solve the following problem:

max
ei

Ex

[
max

jx∈{s,r}
Eyjx

[yjx|x, ei + e−i]

]
− C (ei)

Following the analysis of the previous section, we will define an option value of
experimentation for an agent i that this time will depend on the overall precision
chosen by all the experimenters:

U (ei + e−i) = Ex

[
max

jx∈{s,r}
Eyjx

[yjx|x, ei + e−i]

]

Therefore, the ex-ante utility for a non-experimenter is given by U (e−i). On the
other hand, the ex-ante utility for experimenters is given bymaxei {U (ei + e−i)− C (ei)}.
Assume first that agents also observe the overall precision, hence the appropriate con-
cept for equilibrium is a Subgame Perfect Nash equilibrium (SPE).6 The number of

6Alternatively we can assume that the overall precision is unobservable, then the appropriate
concept is a Perfect Bayesian Nash equilibrium (PBE). However, there exists a PBE with the same
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equilibria depends on the properties of the cost function and the distribution of the
posterior expected mean. Assume for the rest of the paper that

∫ y

0
F (x|ei + e−i) dx

is strictly concave to obtain a unique solution (recall Proposition (2)).

Definition 5. A experimenter-symmetric SPE is defined by the number of people
experimenting, n∗, and the symmetric precision of the signals e∗, such that nobody
has incentives to deviate, that is

• Non-experimenters do not want to deviate:

U (n∗e∗) ≥ U (ei + n∗e∗)− C (ei) for any ei

• Experimenters do not want to deviate:

U (n∗e∗)− C (e∗) ≥ U ((n∗ − 1) e∗)

and
e∗ = argmax

ei
{U (ei + (n∗ − 1) e∗)− C (ei)}

In this experimenter-symmetric equilibrium the overall precision will be n∗e∗.
These two variables will play the same role in the learning process since an increase
in either one will have the same effect (in terms of elasticities) on the value of
experimentation. In fact, this function will have the same properties with respect
the overall precision ne as the ones described in the previous section.

As before, we will use backward induction to solve for the agent’s behavior. In a
symmetric equilibrium where n people experiment in the first period, an experimenter
will choose the optimal precision e∗ such that

Ce (e
∗) = Uei (ei + (n∗ − 1) e∗)

payoffs and actions on the equilibrium path as the ones in the SPE we are interested in. Thus we
use this equilibrium concept for the sake of simplicity.
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The optimal precision inherits the same properties as the ones found in the pre-
vious section. However, we now have an interesting relationship between precision,
overall precision, and the number of experimenters as summarized in the following
lemma.

Lemma 6. The optimal precision e∗ is decreasing in n, but the overall precision ne∗

is increasing in n.

The intuition behind this lemma is that although n and e have the same relative
effect on the value of experimentation, the convexity of the cost induces an imperfect
complementarity between the two components of the overall precision. If the cost
of the precision were to be linear, the overall precision would remain unchanged
since an increase in the number of signals will be exactly offset by the decrease in
the precision. The convexity of the cost function implies that effort becomes less
responsive to changes in n.

The monotonic response of the overall precision to n implies that U (n∗e∗) >

U ((n∗ − 1) e∗) since the value of experimentation is monotone increasing in the over-
all precision. However, these increments will become smaller after some threshold
because of the concavity of such function. Therefore, the equilibrium number of
experimenters n∗ is given by the equation7

U (n∗e∗)− C (e∗) ≥ U ((n∗ − 1) e∗)

Lemma 7. In a experimenter-symmetric SPE, every agent will experiment if N < N̂ ,
and the number of experimenters will be independent of N as long as N > N̂

The concavity and boundedness of the option value of experimentation jointly
with the fixed cost of experimentation implies that the number of experimenters will
be finite in equilibrium even as the size of the population goes to infinity. On the
other hand, the optimal precision is set such that its marginal cost is greater than the

7In differentiable terms this condition is equivalent to C (e∗) ≥ Un (n
∗e∗), with equality if n > 0.
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average cost. However, as the total amount of signals acquired increases (the total
number of experimenters increase), the optimal precision converges to the minimum
efficient scale, which ensures its finiteness. Note the similarity of the problem solved
by a firm facing perfect competition with fixed costs.

3.2 First Best

Suppose now that there exists a social planner who wants to maximize the ex-
ante total welfare of this economy. Given that n agents are experimenting, ex-ante
total welfare is then defined as:

W = NU

(
n∑

i=1

ei

)
−

n∑
i=1

C (ei)

Note that in the aggregate, the number of experimenters are associated with a
linear cost, whereas the precision of the signals have a convex one. Note also that the
social planner must consider the externality generated by the signals by multiplying
the value of experimentation by the number of agents in the economy. Given a
number of experimenter n, the social planner chooses eFB such that

Ce

(
eFB

)
= NUe

(
neFB

)
The social planner will also increase the number of experimenters nFB as long

as8

C
(
eFB

)
≤ N

[
U
(
nFBeFB

)
− U

((
nFB − 1

)
eFB

)]
Lemma 8. In the first best, the number of experimenters goes to infinity as N goes
to infinity, but its proportion nFB

N
goes to zero. The first best precision remains finite

and converges to the minimum efficient scale.
8In differentiable terms this condition is equivalent to C

(
eFB

)
≥ NUn

(
nFBeFB

)
, with equality

if nFB > 0.
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Note again how N increases the marginal value of experimentation, this implies
that in the first best there is more experimentation n than in equilibrium. Moreover,
the number of experimenters grows without bound as the size of the population goes
to infinity. However, n does not increase as fast as N because of the concavity and
boundedness of U (·). Note also that the central limit theorem implies that the speed
of convergence of the learning process is

√
ne and thus is not optimal to increase n

as fast as N .

On the other hand, while an increase in N has a direct positive effect on e pushing
it to infinity, there is also an indirect effect of N coming through n which is growing
bigger and decreases e. It turns out that these effects approximately offset and the
first best precision converges to the point where average cost is minimized, which is
close to the same precision chosen in equilibrium.9

Because of the greater marginal benefit and the linearity of the costs associated
to the number of experimenters, a social planner decides to choose a greater n than
the one obtained in equilibrium. On the other hand, because of the convexity of
the cost associated to the precision, the optimal precision remains finite and close
to the equilibrium one. In other words, the social planner decides to increase n and
maintain fixed e since their relative effect on the option value of experimentation is
the same but is more costly to increase e.

The first best can be implemented under budget balance if the individual pre-
cision is observed. For example, by distributing the surplus from adopting the new
technology among the experimenters when they choose the first best precision, but
not when they deviate, the first best is implemented. To see this note that if exper-
imenters follow the suggested first best precision their payoff is given by

N

nFB
U
(
nFBeFB

)
− C

(
eFB

)
whereas the payoff for nonexperimenters or experimenters that deviate from the
9The discreteness of n is what prevents them to be equal, but as N grows large the choice of n

resembles the case of a continuum number of experimenters.
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first best precision is 0. From the conditions obtained for the first best we know that
the payoff for obedient experimenters will be greater than 0 and thus they will not
want to deviate. Note also that because the suggested wages are nondecreasing the
agents will be willing to adopt the best technology.

4 Constrained Efficiency

Suppose there exists a social planner that wants to maximize ex-ante total welfare
as before, but this time it does not observe the precision chosen by experimenters.
In addition assume both agents have limited liability as before and that there must
be budget balance. Under this restriction, the wages suggested in the last subsection
do not implement the first best since agents would have incentives to choose a lower
precision because they do not internalize the social gains since they are split among
all the experimenters. Assume that the social planner only observes the final output
and designs a wage schedule for experimenters and nonexperimenters as a function
of the observed returns. Let w (y) and v (y) be the wages for an experimenter and a
nonexperimenter when the observed return is y.

The timing is as follows. First the social planner offers the menu of contracts.
Then each agent chooses a contract. Agents who decided to experiment then choose
the precision of their signals. At the end of the stage every agent observes the aggre-
gate sufficient statistic. Then agents update beliefs given the reported information
on how many people experimented, their precision, and the observed aggregate sig-
nal. Then agents take a definitive decision over which technology to use. After the
final output is realized the social planner pays the promised contract.

Solving the problem using backward induction, agents will choose the risky
project whenever the aggregate signal x is greater that the safe return ys. Oth-
erwise they choose the safe project. To assure the agents exert the effort suggested
by the social planner, the latter must solve the following problem:
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max
n,{ei}ni=1,w(yr),w(ys),v(yr),v(ys)

NU

(
n∑

i=1

ei

)
−

n∑
i=1

C (ei) (3)

subject to

Ex

[
Eyjx

[w (yjx) |ei + e−i]
]
− C (ei) ≥ Ex

[
Eyjx

[v (yjx) |e−i]
]

(4)

Ex

[
Eyjx

[v (yjx) |e−i]
]
≥ Ex

[
Eyjx

[w (yjx) |e+ e−i]
]
− C (e) for any e (5)

e ∈ argmaxEx

[
Eyjx

[w (yjx) |e+ e−i]
]
− C (e) (6)

w (yj) , v (yj) ≥ 0 for j = r, s (7)

nw (yj) + (N − n) v (yj) ≤ Nyj for j = r, s (8)

Constraint (4) is the individual rationality constraint for experimenters that pre-
vents them from not exerting any effort and free ride the public information. Con-
straint (5) is the individual rationality constraint for the nonexperimenter and it
states that the individual is better off by not investing in information rather than
acquiring a costly extra signal. The incentive compatibility constraint (6) assures the
individual is willing to invest in the prescribed precision. Finally, constraints (7) and
(8) are the limited liability and budget balance constraints. The latter constraint
will be binding since we are maximizing total welfare, thus we can substitute the
wage for a nonexperimenter by v (yj) =

Nyj−nw(yj)

N−n .

Lemma 9. If (4) and (6) are satisfied, then (5) is satisfied.

The Lemma suggests that if experimenters are already optimizing then nonex-
perimenters are not willing to deviate since it would be more costly to acquire infor-
mation than the benefit from becoming experimenters. Using (8) into the remaining
constraints, taking into account that once the signal is realized the agents choose the
risky project whenever x > ys, and substituting (6) by the first order approach,10

the principal’s problem is simplified to:

10The first order approach is valid if F (x|yr, e) is convex in e and wages are monotone nonde-
cresing.
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max
n,{ei}ni=1,w(yr),w(ys)

NU

(
n∑

i=1

ei

)
−

n∑
i=1

C (ei) (9)

subject to

∫ y

y

w (yr) (1− F (ys|yr, ei + e−i)) dyr + w (ys)F (ys|ei + e−i)− C (e) ≥∫ y

y

Nyr − nw (yr)

N − n
(1− F (ys|yr, e−i)) dyr +

Nys − nw (ys)

N − n
F (ys|e−i) (10)

−
∫ y

y

w (yr)Fe (x, yr|ei + e−i) dyrdx+ w (ys)Fe (ys|ei + e−i)− Ce (ei) ≥ 0 (11)

0 ≤ w (yj) ≤
N

n
yj for j = s, r (12)

Let λ and δ be the Lagrange multipliers for the first two constraints, respectively.
The problem is linear on wages and thus there is a bang-bang solution that is bounded
by the limited liability constraints. Rearranging the derivative with respect to wages
we obtain

1 +

(
n− 1

N − n+ 1

)(
1− F (ys|yr, e−i)

1− F (ys|yr, ei + e−i)

)

− δ
λ

(
Fei (ys|yr, ei + e−i)

1− F (ys|yr, ei + e−i)

)
(13)

As it is common in moral hazard problems, the last term is a likelihood ratio
that compares the probability of undertaking the risky project when more effort is
exerted and the individual increases the precision of the signal. Recall that higher
effort induces a second order stochastically dominated unconditional distribution,
that is a mean-preserving spread. The numerator is zero in the interior only if
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ys = yr and positive (negative) if yr is greater (smaller) than ys, thus satisfiying the
single crossing property. Therefore, by rewarding the agent only for high returns,
the principal is encouraging her to exert a greater effort.

The second term represents the free-riding trade-off. It is also represented by a
likelihood ratio expressed in discrete terms, but this time is a decreasing function of
yr since the numerator has a lower precision. The rationale for having an element
decreasing in the returns is that by rewarding the experimenter for extreme outcomes,
the experimenter is having incentives to become a nonexperimenter by reducing the
overall precision and increasing the probability of being rewarded.

Lemma 10. There exists a N̂ such that, for N ≥ N̂ , optimal wages w (yr) are
characterized by a cutoff z > ys such that

w (yr) =

{
N
n
yr if yr ≥ z,

0 otherwise.
(14)

As the population grows, the free-riding effect decreases since the ratio of exper-
imenters converges to zero, thus their relative reward is bigger compared to the one
for nonexperimenters. Therefore the incentives to become nonexperimenters disap-
pear and the optimal wage for experimenters becomes monotone nondecreasing in
the risky return. The optimal contract suggests that the experimenter is encouraged
to increase the variance of the posterior mean by increasing her payoff in realizations
that are much better than the returns from the safe project. On the contrary, the
total output will be split among non-experimenters when the risky return is not sig-
nificantly better than the safe return. Note that if the risky return is similar to the
safe return, nonexperimenters will appropriate the whole surplus. If this were not to
be the case, then nonexperimenters would be better off by choosing the safe project
even if the aggregate signal suggests the opposite, and welfare would decrease.
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5 Implementation

The analyzed problem can be understood from the perspective of optimal taxation
when individuals generate information externalities. The contract suggests that the
planner should subsidize experimenters when new projects are adopted and generate
sufficiently high returns, otherwise they should be heavily taxed.

In the context of technology adoption, the existence of farmer cooperatives can
be used to implement this contract. For example, National Cereal Boards play an
important role on the coordination of farmers within a country. In Kenya this organ-
ism has played the role of creditors, promoters of research and market development,
and regulators (Raikes, 1994). Although in recent decades their policies have been
oriented towards a free market, the board used to lobby in the government for the
determination of prices. An institution like this one could potentially reward farmers
differently according to their willingness to try new technologies.

Another example of such organizations is the National Federation of Coffee Grow-
ers of Colombia.11 The federation groups more than 500 thousand colombian families
that produce coffee. Its mission is to represent the interests of coffee growers, cre-
ate social programs to improve the quality of life of the producers, investment in
research and knowledge transfer as well as in promotion and advertising, and the
commercialization of coffee.

Within this last objective is what is considered by them their most significant
service called the Purchase Guarantee Policy. This policy involves the setting of a
minimum price at which the coffee should be sold. If no buyers are willing to acquire
the product at this price, they commit to purchasing it. This price is public and
constitutes a reference point for the market. Hence, the federation’s role could be
used to differentiate the price paid to experimenting growers who increase the speed
of adoption of new technologies given this is in its interests.

The proposed contract can also be implemented within firms. The level of inno-

11http://www.federaciondecafeteros.org/particulares/en/
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vation or the adoption of better technologies or practices are reflected in the value of
the firm. Therefore stock options and profit sharing strategies posses similar proper-
ties as our contract. Stock option programs give workers the right to buy company’s
shares at a fixed price for a given period of time. These will be only exercised if the
market price is higher than the strike price originally agreed to. Usually stock options
are used as a long- term motivator and the employee is constrained on exercising the
option after certain time. Similarly, the firm could constrain the option exercise until
the market price crosses a threshold, and thus implementing the proposed contract.
Likewise, profit sharing is also used as a long-term motivator where individuals are
entitled to a percentage of the profits of a firm after a given period. To implement
the contract the firm could set a threshold on the profits such that the workers can
only claim her share if profits are greater than such level.

The optimal contract might be also interpreted as a patent policy to encourage
innovation. It suggests that patents should only be given if it is shown that the new
technology is significantly better than the previous one, and not for marginal im-
provements. However, this result cannot be interpreted as a restriction on the use of
new technology as often happens with patents. In other words, the optimal contract
does not allocate the property rights of the new technology. On the contrary, it en-
courages the adoption of the new technology by all the population, while rewarding
innovators with the surplus they generated, suggesting an optimal pricing policy.

6 Conclusions

The paper analyses the problem faced by innovators who can acquire costly in-
formation before choosing between a known project and an unknown one, but such
information is also observed but others for free. In this context, information is a
public good and thus a free-riding problem arises. In equilibrium there will be less
experimenters than in the first best since agents do not internalize the social benefits
of experimentation.

The first best level of experimentation can be implemented when the number of

20



signals acquired by the agents is observed; however, this is not necessarily the case
when such investment is not observed. I derive the optimal contract when the amount
or precision of the revealed information is unobserved and experimentation cannot
be enforced. The optimal contract suggest that experimenters should be given the
whole surplus if new technology is significantly better that the previous one. The
intuition for this result is that experimenters must increase the number of signals
acquired to increase the probability of being rewarded with the surplus.

The conclusions of the model are robust to the case where agents have hetero-
geneous beliefs. In this case, agents that ex-ante are more indifferent between the
risky and the safe project should be chosen as experimenters since they have more
intrinsic motives to experiment.
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A Appendix

Proof for Proposition 1. First, to show that U (e) > max {µ0, ys} integrate by parts
the value of experimentation to obtain

U (e) = ys +

∫ y

ys

(1− F (x|e)) dx

= ys +

∫ y

0

(1− F (x|e)) dx−
∫ ys

0

(1− F (x|e)) dx

= µ0 +

∫ ys

0

F (x|e) dx (15)

Thus the value of experimentation is greater than max {µ0, ys}. The value of
experimentation is also differentiable because the conditional distribution f (x|yr, e)
is assumed differentiable. To prove that is strictly increasing in the precision, I
will prove that the distribution f (x|e) second order stochastically dominates the
distribution f (x|e′) whenever e < e′. Let x, x′ and x′′ be the sufficient statistics
for the first e signals, the e′ signals, and the additional e′ − e signals, respectively.
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Note that by independence f (x′|e′) = f (x|e) f (x′′|e′ − e). Define the corresponding
conditional means as:

µ =

∫ y

0

yf (y|x, e) dy

µ′ =

∫ y

0

yf (y|x′, e′) dy

First note that by the law of iterated expectations

Ex [x] = µ0 = Ex′ [x′]

Therefore the sequence of posterior means is a Martingale. Now, using indepen-
dence we know that

Ex′ [x′|x] =

∫ y

0

∫ y

0

yf (y|x′, e′) f (x′′|e′ − e) dydx′′

=

∫ y

0

∫ y

0

yf (y, x′′|x, e′) dydx′′

=

∫ y

0

yf (y|x, e) dy

= x

Therefore x′ is a mean preserving spread of µ. Rothschild and Stiglitz (1970)
show that this is equivalent to having

∫ a

0

F (x|e) dx ≤
∫ a

0

F (x|e′) dx
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for all a ∈ [0, y].

Using (15) we obtain U (e) ≤ U (e′). On the other hand, the fact that the pos-
teriors are Martingale imply that when the number of independent signals becomes
large enough, the posterior mean will converge almost surely to the true yr (Doob,
1953). Formally, we have that lime→∞ f (x|yr, e) = 1 if x = yr and 0 otherwise. Thus
the limit unconditional distribution of the posterior is given by

lim
e→∞

f (x|e) = lim
e→∞

∫ y

0

f (x|yr, e) g (yr) dyr

=

∫ y

0

lim
e→∞

f (x|yr, e) g (yr) dyr

= g (x)

where the second line is obtained using uniform convergence, which in turn is
obtained from the almost surely convergence and the differentiability of the dis-
tribution (Ascoli’s theorem). Thus the value of experimentation is bounded by
µ0 +

∫ ys
0
G (y) dy <∞

Proof for Proposition 2. Define a compact domain for e where the upper and lower
bound are given by the largest and the smallest e such that C (e) = U (e), re-
spectively. If there is no such e, the individual is better off by not experimenting
(e = 0). Since the objective function is differentiable we know a maximum exists
using Weierstrass Theorem. Moreover, using the Intermediate Value Theorem we
know an interior optimum is characterized by

Ue (e)− Ce (e) = 0

The latter condition is also sufficient if the problem is concave, which is the case
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when Uee (e) =
∫ ys
0
Fee )x|e) dx ≤ 0 since the cost is convex by assumption. The

maximum is unique if the latter inequality is strict.

Proof for Proposition 3. Suppose the agent decides to experiment, and thus is in an
interior solution. Using the implicit function theorem we know

∂e∗

∂ys
= − Fe (ys|e)∫ ys

0
Fee (x|e) dx− Cee (e)

The numerator is strictly negative, then the sign of the derivative will be deter-
mined by the denominator. The ordering of the signals implies that the conditional
distribution f (x|yr, e) is logsupermodular, thus the unconditional cdf F (x|e) is also
logsupermodular (see Athey (2002)). Therefore for every e, all the unconditional
cdfs will cross uniquely at µ0. To see this just consider the case when e = 0 and
the distribution is degenerate at µ0. Hence, Fe (µ0|e) = 0. Also note that by the
second order stochastic dominance Fe (ys|e) > 0 whenever ys < µ0, and Fe (ys|e) < 0

whenever ys > µ0. Hence the optimal effort achieves a maximum when ys = µ0, and
is increasing (decreasing) for smaller (greater) ys.

Proof for Proposition 4. Using the envelope theorem we obtain

∂

∂ys
(U (e∗)− C (e∗)) = F (ys|e∗) ≥ 0

which implies that the value is nondecreasing in ys since the other alternatives
are also nondecreasing in ys. The second derivative is given by

∂2

∂2ys
(U (e∗)− C (e∗)) = f (ys|e∗) + Fe (ys|e∗)

∂e

∂ys

The first element is always positive since it is a density function. The second
term is also positive by the single crossing property and Proposition (3). Thus the
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function is strictly convex in ys. Since the other alternatives are also convex in ys,
then the maximum of convex functions is also convex.

In the presence of fixed costs, U (e∗)−C (e∗) as a function of ys will cross at most
once each of the outside options. It could cross once the constant µ0 from below
since U (e∗) − C (e) is increasing in ys. It could cross once ys from above since its
first derivative with respect to ys are between 0 and 1. When there is no fixed cost,
c = 0, U (e) = µ0 and e∗ = 0 at ys = 0. On the other hand, when ys = y, then
U (e) = ys and again e∗ = 0. Therefore the principal always prefers to hire an agent
for any interior ys.

Since U (e∗) − C (e∗) is linear in c, there exists a ĉ such that U (e∗) − C (e∗) =

µ0 = ys. Thus, for any c < ĉ, there exists ac, bc ∈ (0, y) such that U (e∗)−C (e) > µ0

for any ys > ac, and U (e∗) − C (e) > ys for any ys < bc. Obviously it must be
the case that µ0 ∈ (ac, bc). Note that ac and bc are increasing and decreasing in c,
respectively, precisely because the function crosses from below and above each of the
corresponding outside options. Finally, for any c > ĉ, the interval is empty and the
principal never experiments.
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